Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity

نویسندگان

  • Young June Kim
  • Kwang Sung Ahn
  • Minjeong Kim
  • Min Ju Kim
  • Jin Seop Ahn
  • Junghyun Ryu
  • Soon Young Heo
  • Sang-Min Park
  • Jee Hyun Kang
  • You Jung Choi
  • Hosup Shim
چکیده

OBJECTIVE Production of alpha-1,3-galactosyltransferase (αGT)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous αGT knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce αGT-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. METHODS Miniature pig fibroblasts were transfected with αGT gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous αGT gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-α-1,3-galactose, an epitope produced by αGT. Using magnetic activated cell sorting, cells with monoallelic disruption of αGT were removed. Remaining cells with LOH carrying biallelic disruption of αGT were used for the second round NT to produce homozygous αGT gene-targeted piglets. RESULTS Monoallelic mutation of αGT gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous αGT gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous αGT knockout piglets. CONCLUSION The present study demonstrates that the time required for the production of αGT-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.

The presence of galactose alpha-1,3-galactose residues on the surface of pig cells is a major obstacle to successful xenotransplantation. Here, we report the production of four live pigs in which one allele of the alpha-1,3-galactosyltransferase locus has been knocked out. These pigs were produced by nuclear transfer technology; clonal fetal fibroblast cell lines were used as nuclear donors for...

متن کامل

Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) i...

متن کامل

Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer

BACKGROUND α1,3-Galactosyltransferase (GGTA1) is essential for the biosynthesis of glycoproteins and therefore a simple and effective target for disrupting the expression of galactose α-1,3-galactose epitopes, which mediate hyperacute rejection (HAR) in xenotransplantation. Miniature pigs are considered to have the greatest potential as xenotransplantation donors. A GGTA1-knockout (GTKO) miniat...

متن کامل

Creating genetically modified pigs by using nuclear transfer

Nuclear transfer (NT) is a procedure by which genetically identical individuals can be created. The technology of pig somatic NT, including in vitro maturation of oocytes, isolation and treatment of donor cells, artificial activation of reconstructed oocytes, embryo culture and embryo transfer, has been intensively studied in recent years, resulting in birth of cloned pigs in many labs. While i...

متن کامل

Comparative N-Linked Glycan Analysis of Wild-Type and α1,3-Galactosyltransferase Gene Knock-Out Pig Fibroblasts Using Mass Spectrometry Approaches

Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2017